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Abstract. The kinetics of phase ordering in binary mixtures in the presence of amphiphikc 
impurity molecules has received a ceitain amount of mention in the l i t e ”  over the last 
thm yea~s. Examples of such complex fluids include ternary microemulsions and miellm 
solutions. AU the models pmposed so far .%e extensions of the models used for lhe study of 
phase ordering in pure binary mixtures, e.g., binary alloys. We review the essential features 
of the models proposed by various groups, including ours, and summarize the main results. 
We compare these models and the resulls with the corresponding experimental observations to 
establish the merits and limitalions of these models. We also mention the challenging open 
questions and the possible future directions of work in ~s frontier area oi interdisciplinary 
research. 

1. Introduction 

The kinetics of phase ordering in simple binary systems, e.g., binary alloys, binary fluid 
mixtures, etc. have been studied very extensively over the last decade (Gunton et a[ 1983, 
Komura and Furukawa 1988, Binder 1990). However, the study of the spatio-temporal 
organization in complex colloidal fluids has begun to receive attention only in recent years. 
Examples of such complex fluids include polymers in solution and in melt, self-assemblies 
of amphiphilic molecules in association colloids, e.g., micellar solutions, etc. The aim of 
this brief pedagogical review is to summarize the recent theoretical developments in the 
area of kinetics of phase ordering in a specific class of complex fluids, namely ternary 
microemulsions and micellar solutions (Chen and Rajagopalan 1990, Gelbert et al 1992). 
and to compare the various different approaches. Moreover, the theories reviewed here are 
also applicable to the kinetics of ordering in mixtures of A and B homopolymers in the 
presence of A-b-B block copolymers (Bates and Fredrickson 1990). where the latter plays 
the role of surfactant. The ldnetics of phase ordering in these systems may be viewed as 
that in a binary mixture in the presence of surfactants. It is interesting to note that in recent 
years various different effects on the kinetics of phase ordering in binary mixtures have 
been taken into account (Jayanth and Nash 1989). e.g., those of quenched and annealed 
impurities (Chowdhnry and Biswal 1994). In this article we focus our attention on the 
effects of surfactant on the kinetics of ordering in a immiscible binary mixture. 

We explain in section 2 some of the essential features of microemulsions. In section 3 
we discuss the main steps in the microscopic as well as phenomenological approaches to 
the study of the kinetics of phase ordering in binary mixtures. The motivations for the study 
of phase ordering in microemulsions and micellar solutions are presented in section 4. The 
microscopic theories and the phenomenological theories, respectively, of phase ordering 
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dynamics in microemulsions and micellar solutions are reviewed in sections 5 and 6. A 
'hybrid' of microscopic and phenomenological approaches is described in section 7. We 
compare the theoretical prediction with the corresponding experimental results in section 8. 
Finally, we conclude this review by comparing the merits and limitations of the various 
theoretical models in section 9. 

2 What is a microemulsion? 

A temary microemulsion is a threecomponent fluid consisting of oil, water and amphiphilic 
molecules, which are known to be surfactant (Chen and Rajagopalan 1990; Gelbert et al 
1992). The amphiphilic molecules have a hydrophilic head and hydrophobic tail. The 
hydrophilic head likes to be in contact with water whereas the hydrophobic tail shies 
away from water (Tanford 1973, Israelachvili 1985). Because of this special property 
amphiphilic molecules arrange themselves at the interface between oil and water with their 
head towards water and the tail towards the oil. The phase diagram of such a temary system 
is shown schematically in figure 1 (Row 1989). At sufficiently high concentration of the 
amphiphiles the system exists in lamellar phases where the surfactants arrange themselves 
in (approximately) parallel stacks. However, we shall not discuss the dynamics of these 
phases in this work. Here we are mainly interested in the phases where the concentration 
of the amphiphiles is not high. Depending on the relative concentrations of oil and water 
the system may exist either in a droplet phase or a bicontinuous microemulsion phase. 
In the droplet phases droplets of oil (water) are dispersed in water (oil). These droplets 
are often referred to as micelles and, therefore, the system under such conditions is also 
called a micellar solution. On the other hand, when the concentrations of oil and water 
are comparable, the system exhibits a bicontinuous phase. At first sight the appearance of 
a large interfacial area in the bicontinuous phase may appear counter-intuitive. However, 
it was argued by Schulman about half a century ago (Schulman and Hoar 1943) that the 
surfactants can reduce the effective interfacial tension between oil and water to vanishingly 
small values so that, unlike an emulsion of oil and water, the mixture of oil and water is 
stabilized by the surfactant. 

L 
Water I Oil 

Figure 1. Schematic phase diagram of a temary system consisting of oil, wafer and surfactants 
(after Roux). 
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The kinetics of ordering in microemulsions and micellar solutions may be viewed as the 
kinetics of ordering in immiscible binary mixtures in the presence of surfactants. Most of 
the theoretical works carried out in this area so far are non-trivial extensions of the various 
earlier works on the kinetics of ordering in binary mixtures. Therefore, before beginning 
our review of the effects of the surfactants we briefly summarize, in the next section, the 
theoretical techniques and the known results for simple binary systems. 

3. Kinetics of ordering in binary mixtures in the absence of surfactant impurities 

There are essentially two different (albeit complementary) theoretical approaches to the 
study of the kinetics of the phase ordering processes, viz. microscopic lattice models and 
phenomenological coarsegrained models. 

As is well known, the binary alloys can be modelled as an king spin system where 
Si = 1 correspond to an A atom and Si = -1 correspond to a B atom. In the symmeaic 
case, i.e., when EM = EBB, the Hamiltonian for the system is given by 

where the summation is to be carried out over all the distinct nearest-neighbour spin pairs. 
However, no such model is complete without specification of the prescription for the 
dynamical evolution of the system (Kawasaki 1972). In the case of binary alloys, unlike the 
magnetic counterpart, the order parameter is conserved, i.e., the concentrations of A atoms 
and 3 atoms remain unaltered during the time evolution. The kinetics of ordering in such a 
system can be studied at a microscopic level by using the so-called Kawasaki spin-exchange 
dynamics: two anti-parallel nearest-neighbour spin pairs can exchange their position with a 
probability 1/[1 +exp(pAE)], with p = I/ (ksT) where kB is the Boltzmann constant and 
AE is the energy change that would be caused by the interchange of the two spins. 

In the phenomenological approach the system is described by an order parameter field 
Y(r) ,  which is the local difference in the concentrations of the A and B atoms. In contrast 
to the discrete allowed values of the spins in the lattice model, the order parameter can take 
all real values in the interval -1 < Y < 1. 

The coarse-grained freeenergy functional for the d-dimensional system is given by 

where ro. U and c are phenomenological constants. The symmetry requirements rule out 
the possibility of 9 and Y3 terms in this functional (2). The dynamics of the system is 
assumed to be governed by the so-called Langevin equation 

a w ,  t y a t  = rvz[w/6v(r, r ) ]  + V(T ,  t )  (3) 

where r is the phenomenological kinetic coefficient, 8/8Y denotes the functional derivative 
with respect to Y and the Laplacian takes care of the fact that the order parameter is 
conserved. q(r, t )  is noise, which is usually assumed to be of ‘Gaussian white’ nature, i.e., 

where kBT guarantees the approach to the true Gibbsian equilibrium. In the context of the 
binary alloys the equation (3) is often called the Cahn-Hilliard-Cook equation for historical 
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reasons and the model described by equations (2)-(4) is usually referred to as model B 
(Hohenberg and Halperin 1977). The computation becomes much more efficient (i.e., the 
morphologies characteristic of the asymptotic regime can be obtained within a very short 
computer time) by solving equation (3) above by the cell dynamics method (Oono and 
Puri 1987). 
WO quantities are most important in describing the kinetics of this growth process, 

viz. the time dependence of the length scale R ( t )  characterizing the coarsening pattern 
and the dynamic scaliig of the structure facture S(q, t ) .  The structure factor is the Fourier 
transform of the correlation function in real space, i.e. 

s(q, t )  = G ( T ,  t )  exp(iq. P) 
r 

where G ( r ,  t )  = ( S ( 0 ,  t ) S ( r ,  t ) )  - (S)2 is the correlation function in real space (see 
figure 2(a)). However, since numerical computations are carried out either on discrete 
lattices (in the case of microscopic models) or on discrete grids (in the case of 
phenomenological models) the corresponding structure factor in given by 

with q = (Zz/L)(mZ + "31) and m, n = 1.2,3,  . . . , L. Following a rapid quench from a 
very high temperature to a temperature below the coexistence curve, coarsening of ordered 
domains takes place and, consequently, the first zero crossing of G(T, t )  (i.e. the smallest 
R for which G(r ,  t )  = 0) occurs at larger and larger values of R at successively longer 
values of time t .  As a result, the location of the first zero crossing of G(T,  t )  may be taken 
as a measure of R ( t ) .  Note also that during the coarsening process the position of the peak 
in S(q.  t )  keeps moving towards smaller values of q. The dynamical scaling form of the 
structure factor is given by 

S(q, 0 = R d F ( q R ( t ) )  (6) 

where F ( x )  is a function of x = q R ( t ) .  The length R(r) can be exhacted from S(q, t )  
in several different ways: (i) R-' = k , /2n ,  where k,,, is the location of the maximum of 
the stluchue factor S(q), (ii) 2 n / R  may be identified with the first moment of the structure 
factor or the square root of the second moment of the structure factor, etc. The length R ( t )  
has been found to follow the gowth law 

R(t )  - t" (7) 

In the case of binary alloys the order parameter is conserved and n = 5 whereas in the 
binary systems without order parameter conservation n = $; the latter is a model for phase 
ordering in king-like magnets (see the appendix). Moreover, in binary fluids hydrodynamic 
effects lead to the growth law (7) with n = 1 (Siggia 1979) (see the appendix). However, it 
has been established in recent years that (see the preprint by Chowdhury and Biswal(l994) 
for the most recent review and the appendix for an elementary argument) 

R ( t )  - (logty (8) 

in binary systems in the presence of quenched disorder (e.g. impurities). 
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k 

Figure Z (a)  A schematic ploi of the real-space correlation function G(r )  at time f .  (6) A 
schermic plot of the s t~c tu re  factor S(k) at six different times: as the systemevolves wiul time 
the location of the peak in S(k)  shifts towards the origin. 

4. The motivation for the study of the phase ordering kinetics in microemulsinns and 
micellar solutions 

It may be tempting to make an educated guess as to the possible effects of surfactants on 
the kinetics of ordering. 

(i) In the absence of surfactants the interfacial velocity in a system without disorder 
is known to be proportional to the product of the interfacial curvature and the interfacial 
tension between the two components (see the book by Gunton and Droz (1983) for an 
elementary exposition). Since the surfactants are l ie ly  to become crowded at the interface 
as the coarsening proceeds the interfacial tension is likely to be reduced gradually with the 
passage of time. Does the coarsening stop in the late stages because of the vanishing of the 
interfacial tension? 

(ii) The surfactants form an amphiphilic membrane (a monolayer) at the interface 
between oil and water. Since the amphilphilic membranes (Nelson et al 1988, Lipowsky 
1991) are known to have a significant bending rigidity (Helfn'ch 1973, 1990). unlike an 
ordinary interface between oil and water, the morphology of the random pattern may also 
differ from those in the absence of surfactants. 

(iii) The surfactants may act like annealed impurities. If so, the interfacial motion may 
be thermally activated, like that in a disordered system. In this case the ordering process 
may be logarithmically slow. 
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5. 
solutions 

5.1. Wdom model of micmemulsion and kinetic processes 

To my knowledge, Widom’s model (1986) is the simplest lattice model of ternary mixtures 
of oil. water and surfactants (Gompper and Schick 1992). This is a lattice model in the same 
spirit as, for example, the lattice model of binary alloys. However, in contrast to the lattice 
model of binary alloys described above, the molecules of oil, water and surfactants in this 
model are located on the bonds rather than on the lattice sites. In this model the molecules 
of 02, water and surfactants are represented by the nearest-neighbour bonds of a spin-; 
king model with non-vanishing interactions between nearest-neighbour as well as farther- 
neighbour spin pairs. The bonds between u p u p  nearest-neighbour spin pairs represent 
oil molecules, those between down-down spin pairs represent water molecules and those 
between anti-parallel spin pairs denote the surfactant molecules. The Hamiltonian for this 
model is given by 

Phase ordering in the lattice models of ternary microemulsions and micellar 

H = -J  c SiSj - 2M Si& - M SiSi (9) 

where, for three-dimensional systems, the summations in the first, second and thud krms 
on the right-hand side are to be carried over, respectively, the nearest-neighbour. second- 
neighbour and fourth-neighbour spin pairs on a simplecubic lattice. The interactions 
J are positive (ferromagnetic in the magnetic terminology) whereas M are negative 
(antiferromagnetic). Note also that the bending energy (Helfrich 1973) of the molayers 
of the surfactants at the oil-water interface is taken into account through non-zero M .  
Very recently, we (Morawietz er al 1992) have introduced a Kawasaki-type spin exchange 
dynamics for the Widom model of microemulsions, where the numbers of molecules of 
oil, water and surfactants are conserved. Note that in this algorithm we exchange the spins 
on the lattice sites, rather than the molecules; however, the algorithm is such that it leads 
to simultaneous exchange of three molecules while satisfying the conservation law for the 
concentration of each type of molecule. 

An exchange of an up spin with one of its down spin neighbours is allowed if such an 
exchange does not alter the total number of the u p u p  nearest-neighbour pairs, down-down 
pairs and updown pairs in the system because the molecules are represented by such spin 
pairs. On the basis of this observation, we proposed the following rule for the temporal 
evolution of the system in two dimensions: two anti-parallel nearest-neighbour spins can 
exchange their position, with probability 1/(1+ exp(pAE)), provided the numbers of up 
and down spins among the three neighbours of the first spin (excluding the second spin, 
which is also a neighbour of the fist) are the same as those among the three neighbours 
of the second spin (excluding the first spin, which is also a neighbour of the second spin). 
More details of this algorithm can be found in the original paper of Morawietz eta[ (1992). 
Examples of two situations involving the exchange of two anti-parallel nearest-neighbour 
spin pairs in this dynamical model are shown in figure 3. 

As a first step towards the dynamical study using this algorithm we investigate the 
relaxation of sinusoidal fluctuations with a well-defined k vector. The initial magnetization 
density is varied sinusoidally as sin(qx), where the wavelength 2 z / q  is much larger than one 
lattice constant but much smaller than the length of the system (note that the magnetization 
density is the difference between the local concentrations of oil and water). The parameters 
J/kBT and M/kBT are such that the corresponding equilibrium phase is a disordered fluid. 
We observed that when the amplitude of the initial sinusoidal magnetization is sufficiently 
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5 0  o s  
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- -  - -  
w s  s w  

- w -  +O++--S+ - S +  
s s  o w  
f -  f -  

(b) 
F i e  3. Two examples illusvaring the dynamic algorithm of Morawietz et d for Ihe kinetics 
of the Widom model. The symbols + and - correspond, respectively, to the ‘up’ and ’down’ 
spins at the lattice sites, and the symbols 0, W and S represent the molecules of oil, water and 
surfactant located on the nearest-neighbwr bonds. 

small, the subsequent decay maintains its sinusoidal shape (see figure 4). The area under 
the profile shown in 6gure 4 is a measure of the total deviation from equilibrium. In our 
Monte Carlo simulation we have observed this deviation to decay diffusively as a function 
of time provided that the initial deviation from equilibrium is not too large. 

In the conventional approach to the study of kinetics of ordering processes one quenches 
the system from the disordered phase to the ordered phase. However, for computational 
convenience, we quench the system from the ordered phase to the disordered phase and 
study the kinetics of disordering. More specifically, we chose an initial condition where oil 
is in the upper part, soap in the central part and water is at the bottom. The parameters 
J f kBT and M f kBT are so chosen that the corresponding equilibrium phase is known to 
be a disordered fluid. In this case also, we found the concentration fluctuation to decay 
logarithmically with time. In other words, the non-exponential relaxation arises here from 
the superposition of a large number of modes with different relaxation times. 

5.2. Kawakatsu-Kawasaki model and the kinetics of ordering 

The limitations of the Widom model in accounting for the equilibrium phase diagram of 
the ternary system are now well known and prescriptions for curing these limitations can 
be found in the literature (Hansen etal 1991). The so-called decorated spin-; model (Chen 
et a1 1988) is believed to be a more realistic description of this system. Very recently, 
Kawakatsu and Kawasaki (1992a) have proposed a dynamics for a similar, albeit somewhat 
simplified, lattice model for the kinetics of ordering in an immiscible binary mixture of 
A and B components in the presence of surfactants. In this model Si = 1 corresponds 
to an ‘A monomer’ and Si = -1 to a ‘B monomer’. A fraction of the nearest-neighbour 
bonds hetween dissimilar molecules is occupied by the surfactants. Thus, in this model, 
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5 10 15 20 25  -500 " ' '  ' " " * '  ' I  ' ' '  I '  I '  " ' 

Figure 4. The magnetization dewily profile 5 various times during the time evolution starting 
from the initial sinusoidal profile A sin(qx). Different symbols. f" top to bottom correspond 
to times 50, 100.200,350.550,750 and IOW. respectively. The parameier values an L = 1600, 
q L / 2 n = 3 2 , M J b T = - O . 5 .  

the molecules of A and B component occupy the lattice sites whereas the surfactants are 
located on the bonds. The Hamiltonian for this system is given by 

H = fJC(I - SjSj). 

This Hamiltonian is effectively equivalent to equation (1). Moreover, note that the energies 
of the A-A, B-B and A-B interactions are given by Em = 0 = EBB and Em = J .  It is 
worth emphasizing that Em = 0 only for free monomers A and B on the nearest-neighbour 
lattice sites for nearest neighbours that are not connected by any rigid bond. Since J > 0, 
A and B components tend to phase separate in the absence of surfactants. Since the AB 
pairs connected by a rigid bond are not allowed to split into two free monomers during 
the time evolution the interaction energy between A and B monomers in such a connected 
pair does not affect the dynamics. However, the dynamics must distinguish between the 
monomers connected by a rigid bond and the free individual monomers so as not to split 
a surfactant into monomers. The crucial feature of the Kawakatsu-Kawasaki dynamics, 
which distinguishes it from the Kawasaki spin-exchange dynamics for the binary alloys, is 
that the anti-parallel spin pairs considered for exchange are next-nearest neighbours with 
respect to each other (see figure 5 for details). 

The most important observation of this Monte Carlo study is that not only do the 
surfuctants slow down the growth process but also the nature of this slowing down is very 
similar to that caused by non-amphiphilic annealed impurities. The latter observation is 
consistent with that of most of the other independent works. 

6. Phenomenological models 

To my knowledge, the simplest Ginzburg-Landau model for ternary microemulsions was 
proposed by Gompper and Schick (1990). In this model the free-energy functional is given 
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Figure 5. Schemalic representations of (a) the lanice mdel  of a binary alloy and (b) the 
Kawakatsu-Kawasaki lauice model of a temary System where one of the components is .a 
surfactant. The elementary 'exchange' processes allowed in the dynamics of the two models 
are also shown. Exchange of anti-parallel nearest neighbours only is allowed in the case of the 
binary alloy whereas exchange of antiparallel next-nearest neighbours only is allowed in the 
case of the ternary system. 

by 

F[Y(?-)] = 1 ddr[c(V2W2 + g(Y)(VW2 + f(Wl (10) 

where the order parameter Y ( r )  describes the difference between the local densities of oil 
and water. In order to account for the three-phase co-existence possible in this temary 
system, Gompper and Schick imposed the condition that the function f must be chosen 
in such a way as to have three minima. Although Gompper, Schick and co-workers have 
used this model to investigate the problem of (non)wetting of the oil-water interface by 
microemulsion (Gompper and Schick 1990, Gompper etal 1991) as well as to calculate the 
moduli of bending rigidity (Gompper and Zschocke 1991). to my knowledge, the dynamics 
of phase ordering in this model has not been investigated so far. Therefore, we shall not 
discuss this model further in this review and urge the interested reader to look into the 
original papers for detailed discussions on the justification of the specific form (10) of 
the free-energy functional. The other phenomenological theories of microemulsions and 
micellar solutions have been reviewed by Safran (1992). 
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Note that the model freeenergy finctional (10) involves only a single order parameter. 
The simplest Ginzburg-Landau model studied so far in the context of the kinetics of 
phase ordering (Iaadji et al 1991, 1992) involves two order parameters. This model 
is an extension of the continuum model of binary-alloy phase ordering. Naturally, this 
is an appropriate extension of equations (2)-(4) above. Suppose p(r) is the density of 
the surfactant molecules at the location T. Laradji e ta l  (1991, 1992) postulated that the 
effective freeenergy functional for the ternary system under consideration is given by 

F[Y(r),p(r)l= /ddr[c(VY)’ - r o Y Z + u Y 4 + g p Z Y ’ + a p Z - ~ p -  ( A p ) Y l + F ,  

(11) 

where c, ro, U, g, a and f i  are phenomenological coefficients. p is the chemical potential 
of the surfactant, whereas A p  is the difference of the chemical potentials of water and oil. 
Cubic terms have been omitted from (11); however, in more general situations such terms 
may play some role. Note that g is the strength of the coupling between the two fields p 
and P and the equation (11) is an extension of equation (2). However, it is not clear why 
a term proportional to p2Y2, rather than pYz,  has been included in (11). 

The equations of motion in this model are given by 

= V~(SF/SY) + v * y ( ~ ,  t )  (12) 

(13) a p / a t  = V*(SF/SP)  + tlP(r, t )  

where 

(a(?-, t)q(r’, 1’)) = 2k,TVZS(T - r’)S(t - t’). (14) 

The equations (12)-(14) are the generalizations of the equations (3) and (4). In the 
terminology of the Hohenberg-Halperin classification scheme (Hohenberg and Halperin 
1977) this model corresponds to model D. The surfactant property of the amphiphiles is 
taken into account through 

F, = -s /“ ddr p(VY)’ (15) 

where s is a phenomenological constant. 
Laradji et at (1991) solved equations (11Hl5) numerically (see the original paper for 

the numerical values of the parameters) starting from a random initial condition, i.e., to each 
grid point Y(T) and p(r)  were assigned small random values around their initial average 
values at t = 0. The second moment of the circularly averaged structure factor, R ( f ) ,  was 
monitored as a function of time t (see figure 6). The main results of their investigation are 
as follows. 

(i) The location of the peak of the structure factor moves initially to small k as time 
passes, thereby indicating coarsening. However, the coarsening seems to come to a halt 
at very late stages because the peak position was observed to become static at a fixed 
k = k. # 0. Moreover, the larger the concentration of the surfactants, the smaller the final 
size of the oil-rich (or water-rich) domains. 

(ii) R( t )  c( (logt)Y. although estimation of y was not carried out by these authors. 
The slow growth observed in this study is consistent with the corresponding results of the 
microscopic models in the preceding section. 
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Figure 6. (0) The time evolution of the domain size in the phenomenological model of M j i  ef 
al. The four curves correspond to surfactant concentdons 0.1,0.15, 0.17 and 0.2, respebively, 
from the top to the bottom. (b) Dynamical scaling in the model of Lmdji et al. The data for 
times from t = 400 to t = 2000 and wave vector values from k = 0 to k = R collapsed onto a 
single universal came, thereby establishing the validity of the dynamical scaling in Lhis model. 

A more detailed Gmburg-Landau model with two order parameters was introduced 
earlier (Chen et al 1990) for studying the equilibrium phase diagram. The scalar order 
parameter Y(r) in this model has the same interpretation as in the other models, namely 
the difference of the local densities of oil and water. However, the other order parameter is 
a vector; its magnitude is large in the surfactant-rich regions and it points in the direction of 
the heads of the surfactant molecules at T.  To my knowledge, the kinetics of phase ordering 
in this model has not been studied so far. 

7. A hybrid model 

In this model the binary mixture of A (say, oil) and B (say, water) is represented by a 
continuum field Y(P) in the same fashion as outlined in section 2 in the context of the 
continuum description of binary alloys. However, unlike the continuum model discussed 
in the preceding section, the amphiphiles are treated at the molecular level by describing 
the dynamics of the positions of the centre of gravity and the orientations of the molecules. 
This is why this model is called a 'hybrid'. 
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In this model the surfactant molecules are modelled as ‘dumb-bells’ of length 1, which 
have two interaction centres at the two ends, one of which is A-philic and the other is B- 
philic. Kawakatsu and Kawasaki (1990) assumed that ‘the A-philic and B-philic interaction 
centres of the surfactant have the same chemical species as A and B components of the 
binary mixture, respectively.’ Suppose we denote the position of the centre of gavity of 
the ith surfactant molecule by ri and the unit vector from the B-philic interaction centre to 
the A-philic interaction centre of the same molecule by the symbol si. For simplicity, let 
us also assume that Vu(?- )  = VBB(T) = @(r) and VAB(T) = @(r).  Then, the free-energy 
functional is given by 

F = Fw + F Q ~  + Fss (16) 

where 

F** = /ddr[$*{VY(r))Z + (-ro)Y2(r) t uY4(r)]  (17) 

FqS = ~ N , + ( 4 1 / 2 ) C S d ~ r V - ( r - ~ i ) q  *VY(r)  (18) 

F,, = 42 C ~ + ( r i j )  + (z’ /~)~s~s;)vw~~~) + (~~/4)(s:s:)vv~(rij)1 (19) 

with 

where 

is assumed to be a constant. 
The equations of motion are given by 

where the L are phenomenological kinetic coefficients. The second tem on the right- 
hand side of equation (27) arises from the constraint 141. Equations (25)-(27) were solved 
numerically by assuming the forms @(r)  = -exp(-r) and Y ( T )  = aexp(-r). Equation 
(25) was solved by the cell dynamic method (Oono and Puri 1987) whereas equations 
(26) and (27) were solved by the molecular dynamic method (see the original paper for 
the numerical values of the various parameters; see also Kawakatsu and Kawasaki 1991a, b, 
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Figure7. Dependences of the characteristic wave numbers ( I C )  in the hybrid model of Kawakatsu 
and Kawasaki for Ns = 0 and N, = 512 where the equilibrium phase is ( a )  a bicontinuous 
micrcemulsion and (b)  a micellar solution. 

1992b.c). Two kinds of initial condition were used: (i) in the case of equal volume fractions 
of the A and B components a random bicontinuous structure formed and coarsened with 
time; (ii) in the case where the volume fraction of the B component was three times that 
of the A component a dispersion of droplets was formed which coarsened with time. In 
both these situations the asymptotic growth was found to follow R(r) a t1I3 (see figure 7), 
which is also the asymptotic growth law for binary mixtures in the absence of amphiphilic 
impurities. 

It is worth mentioning here that equation (17) takes into account the surfactant property 
of the amphiphilic molecules in a much more realistic manner than equation (14) in the 
case of the continuum model discussed in the preceding section. Nevertheless, this hybrid 
model suffers from the shortcoming that the excluded volume of the surfactants is not taken 
into account because of the assumption that PA(?-) + p ~ ( r )  = constant. 

8. Comparison with experimental results 

To my knowledge, the only work on such ternary systems reported in the literature is that 
of Roux (1986). Interestingly, the quenching of the system was carried out in two different 
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ways in this work, viz. through temperature quench and through shear. It was claimed that 
although there is an intermediate regime where the growth is identical to that in the case of 
binary alloys (without hydrodynamics), i.e., R( t )  c( t i l 3 ,  the asymptotic growth law seemed 
to be R(t)  M E ,  which is known to be the growth law in binary fluids (in the presence of 
hydrodynamic flow). 

The theories reviewed in sections 5-7 can also be compared with another interesting 
class of physical systems. A block copolymer A-b-B consisting of two distinct polymer 
chains connected at the ends can act as a surfactant when dissolved in an immiscible 
A/B homopolymer mixture (Wang and Safran 1990). The kinetics of ordering in a three- 
component mixture consisting of A/B/A&B, which is quenched from a high temperature to 
a temerature below the coexistence curve, has been monitored experimentally. Interestingly, 
it has been found that R(Z) c( t1l3 in the late stages (Kawakatsu et al 1992). 

9. Conclusion 

In this brief review we have surveyed the models proposed so far for the study of the 
dynamics of phase ordering in binary mixtures containing amphiphilic impurities. vpical 
examples of such systems include ternary microemulsions consisting of oil, water and 
surfactants. Following Widom and Kawakatsu et d, we have used the term ‘micellar 
solution’ to denote the droplet phase and reserved the term ‘microemulsion’ for the 
bicontinuous phase. However, micelles swollen with oil or water are often referred to in the 
literature as microemulsion droplets. So far all the models have had only a limited success. 
The amphiphilic nature of the surfactant molecules is captured in a more satisfactory manner 
by the hybrid model of Kawakatsu and Kawasaki (1990) than by the continuum model of 
Laradji et af (1991). However, as noted by Kawakatsu and Kawasaki, the hybrid model 
fails to take account of the excluded volume of the surfactants. So far as the microscopic 
models are concerned, the Widom model is computationally more efficient because of its 
simplicity, although the model of Kawakatsu and Kawasaki (199%) is more realistic. So 
far aU the models have been studied only in two dimensions and at present the computer 
time requirements for three-dimensional studies are prohibitively large. Moreover, none 
of these. models incorporate hydrodynamics, which seems to have important effects on the 
late stages of the dynamic evolution in ternary microemulsion. I hope that this review will 
stimulate detailed experimental investigations of much broader classes of systems which 
may be the physical realizations of the models discussed in sections 5-7. 
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Appendix 

In this appendix we present simple derivations of some of the relevant growth laws through 
heuristic arguments. We begin with binary systems in which the order parameter is not 
conserved, e.g., an king magnet. A domain of the minority phase would shrink locally in 
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the convex regions (‘tips’) and p w  locally in the concave regions (‘dips’) of the interface. 
Therefore, in a non-random system the growth of the domains in the late stages is driven by 
the interfacial curvature, i.e., the local velocity dR/dt of the interface is proportional to its 
local curvature 1/R. Consequently, in these systems with non-conserved order parameter 
the (linear-) domain size R(t) follows the Lifshitz-Allen-Cahn growth law R2 N t. 

Next, let us derive the corresponding growth law for binary systems with conserved order 
parameter, e.g., a binary alloy (Huse 1986). Suppose the system is near local equilibrium 
on length scales much smaller than R(t). For a portion of such a curved interface to be in 
local equilibrium the pressure due to the interfacial tension must be balanced by that due to 
the local field h conjugate to the order parameter M, i.e.. u/R = h M .  Thus, the local ‘field’ 
h at time t is h = u/[MR(t)} and the field gradient is u/[MR2(t)]. This field gradient 
gives rise to the order parameter ‘current’ Aa/[MR2(f)] and the corresponding ‘velocity’ 
Au/ [M2RZ( t ) ) .  In other words, (dR/&) - L T / { M ~ R ~ ( ~ ) ] .  which implies R - tlP. This 
is the Lifshitz-Slyozov growth law for binary systems with conserved order parameter but 
without hydrodynamics effects. 

The growth law in binary fluids is modified by hydrodynamic effects (Siggia 1979). 
Long-wavelength disturbances along the axis of a fluid tube of radius R lead to a pressure 
gradient along the axis. Consequently, the fluid is driven from the ‘necks’ to the ‘bulges’. 
This process leads to the growth law R - (u/q)t, where U is the interfacial tension and I) 
is the shear viscosity. 

Finally, let us derive the growth law for binary systems in the presence of quenched 
random impurities. For simplicity, we consider non-conserved order parameter. Disorder 
gives rise to barriers against interfacial motion. The time taken to overcome the barrier by 
thermally assisted hopping over it is given by t - toexp[AE(R)/k~T] where AE(R) is 
the barrier encountered when a segment of the interface of linear size R tends to move. 
If the barrier scales as R*, then the domain size at time t is given by (Wain 1984) 
R(t) - [TIn(t/t)IX with x = l/q. 

Note added in pmoj? After the submission of ow manuscript Dr T Kawakatsu kiudly informed us that longer 
simulations on larger samples of the of the hybrid model reveal a growth that is, in the very late stages, slower 
than the t’p law observed earlier. This trend of the data is consistent with the 9ogarithmidy’ slow asymptotic 
gmwth observed in the model of Laradji dol .  
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